

Jets & MET with CMS Calorimeter

Shuichi Kunori U. of Maryland 07-Aug-2001

Brief history of HCAL/JetMet Simulation & Software

'94	CMS TP	- requirements	SSCSIM (physics) new CMSIM (single particle)	
'95	Test Beam	understand test beam dataverify GEANT3	Test beam sim Geant3 -	
'96	Test Beam	- optimize HCAL geometry Heavy Higgs/SUSY (high Et>50GeV)		
'97	HCAL TDR ECAL TDR			
'98	TRK TDR	- optimize dead material distribution in ECAL and Tracker Light Higgs / single top	CMSIM (physics) → Reco - fotran -	
'99		 (Et <50GeV & fwd jets & b-tag) - jet energy correction - met energy correction → L1 algorithm and rates 	CMSIM → Reco – fortran - → ORCA	
'00	Trig TDR			
'01		ttH (multi jets, b-tag) - HLT jets/met (low & high lumi.)		
'02	DAQ/HLT TDR	Met → SUSY, extra-dim. Jets Et~1-2TeV → compositeness		
'04	PHYS. TDR		OSCAR – Geant4 – (slow/fast) → ORCA	
'06	1 st Run			

Main Issues

Many physics analyses require

- low E_T jets:

from top, W, Higgs from WW fusion

part of signal background rejection (e.g. jet veto)

- High luminosity

pile-up energy low ET jets from overlapping events fake jets due to pileup.

- τ jet
- b jet (tag)
- Correct energy scale from low E_T to very high E_T
- Better resolution for Jet/MET

E_T range 20GeV-2TeV

H(170) -> WW -> IvIv

CMS Note 1998/089 (with FNAL group)

Event Selection:

(total 11 cuts)

two opposite sign leptos

- PT cuts (20GeV,10GeV)
- angle between two leptons

jet veto

- ET>20GeV in $|\eta|$ <2.4: removed

Mass (WW)

-M > 140GeV

Results:

- number of events (5fb⁻¹) H / tt / WW = 54 / 35 / 28
- good channel for discovery
- background: need good understanding
- jet veto: important.

Background: tt -> (Wb)(Wb) ->(Ivb)(Ivb) 62.5pb WW(continum) -> IvIv 7.4pb

Single Top - Kinematics

CMS Note 1999/048 (with FNAL group)

Measurement of

- V_{tb} / top decay properties / background to new physics

Forward tagging jets & Higgs Couplings measurement

D.Zeppenfeld, R.Kinnunen, A.Nikitenko, E.Richter-Was, Phys.Rev., D62(2000) pp13009

Accuracy expected with 200 fb⁻¹of data with ATLAS+CMS detectors at LHC

- □ measure Hγγ, Hττ, Hgg couplings at 10 % level
- □ hWW coupling ($|\sin(\beta-\alpha)|$) can be measured at 5% level

Although $\sigma(VBF)\sim\sigma(GF)/6$, VBF process may play a big role in measurement of higgs properties in addition to discovery potential.

Pion Response: Linearity

ECAHL+HCAL: Non compensating calorimeter

96'H2 Teast Beam Data

CMS Simulation

ET=3 GeV pion in $0<|\eta|<5$ 3 GeV pions

Jet Response and Correction #1

CMS IN 2001/001

3

Offline jets

with pileup

(with Krokhotine, ITEP)

Et-eta dependent correction for QCD jets

No pileup

 $Et(corr)=a + b \times E_T(rec) + c \times E_T(rec)^2$

With pileup

Dijet Mass Resolution

W(jj)

No pileup

With pileup

(tH⁺ sample)

Top(jjj)

M(bb) in ttH

Before correction

Jet energy correction

without: 19%

with: 14%

CMSJET 15%

After correction

(S.Arcelli & V.Drollinger)

MET

CMS Note in preparation (with Nikitenko, CERN/ITEP, Kinunnen, Helsinki)

Out of cone corr. uses weights for jet(30GeV) corr.

Corrections

Type 1: Jet corr.

Type 2: Jet corr. + out of cone corr.

Corrected MET for mSUGURA Jets+MET at low lumi

Higgs mass in bbA, $A \rightarrow 2\tau \rightarrow 2j$

before correction

after correction

bbA, A->2τ->2j	no corrections	type1 corrections	type2 corrections	CMSJET
<m<sub>H></m<sub>	438.3 GeV	500.3 GeV	511.0 GeV	500.0 GeV
σ/ <m<sub>H></m<sub>	19.7 %	18.9 %	16.8 %	13.4 %
$\epsilon_{ m reco}$ (corr.) / (no corr)	1	1.53	1.80	

Jet correction method #2

CMS Note in preparation (with MSU, ITEP group)

Jet Corr. #1

 α x (EC+HC)

- corr. for jet energy scale
- α depends on jet(Et, η)

Jet Corr. #2

$$\alpha$$
 x EC + β x H1 + γ x H2

- optimize jet resolution (and jet energy scale)
- α , β , γ depends on jet(Et, η)

Optimized weights by #2 $0.0 < \eta < 0.4$

Jet Correction method #2

Table 1: Optimum weights and energy resolutions for ET=80 GeV jets

eta range	eb	hb1	hb2	ee	he1	he2	RESOLUTION CMSIM120 weights + energy corrections	RESOLUTION optimum weights
0.0 - 0.4	1.48	1.12	1.12				0.143	0.136
0.4 - 0.8	1.49	0.95	1.19				0.141	0.134
0.8 - 1.1	1.49	1.08	1.19			1	0.144	0.137
1.25-1.45	1.47	0.98	1.40	1.89	1.26	1.54	0.136	0.133
1.7 - 2.0				1.44	1.04	1.15	0.134	0.128
2.0 - 2.4				1.32	1.03	1.15	0.123	0.120

Table 3: Optimum weights and energy resolutions for ET=120 GeV jets

eta range	eb	hb1	hb2	ee	he1	he2	RESOLUTION CMSIM120 weights + energy corrections	RESOLUTION optimum weights
0.0 - 0.4	1.40	0.93	1.16				0.124	0.119
0.4 - 0.8	1.41	1.13	1.13				0.132	0.126
0.8 - 1.1	1.40	1.16	1.16				0.125	0.121
1.25-1.45	1.44	0.82	1.37	1.85	0.55	1.73	0.125	0.119
1.7 - 2.0				1.37	0.91	1.14	0.122	0.116
2.0 - 2.4				1.29	0.70	1.17	0.117	0.113

Correction Method #3 (single pion)

(D.Green)

$$E = 1/e_E (e/\pi)_E R_E + 1/e_H (e/\pi)_H R_H$$

$$F_o = E_e / E \sim 0.11[\ln(E)]$$

 $e/\pi = e/h/[1+(e/h-1)F_o]$

$$(e/h)_{HCAL} \sim 1.39$$
 (NIM paper)

To find e/h for ECAL, measure e/pi at different energies for showers where there is a substantial energy (> 30% of the beam energy) in ECAL.

$$(e/h)_{ECAL} \sim 1.60$$

Linearity is restored to a few %. The resolution is Gaussian to a high level of accuracy with ~ NO constant term and a 120% stochastic coefficient

Next: identify em cluster and had cluster in jet using transverse shower shape (in crystals) and reco-ed tracks and apply this to had cluster.

Improvement of jet energy resolution with tracks

Effect of Threshold on low E_T jet and MET

Lower threshold is better!

Electronics noise and occupancy define the threshold. >> aim at 0.5GeV/tower @ 10E34

Front end electronics simulation

E = Σ (Signal buckets)_i – Σ (pre buckets)_j/n Electronics noise 200MeV/25nsec/ch \rightarrow 500MeV/(3+3) buckets/ch

→ New scheme: 2 buckets for signal separate pedestal events

Algorithm for L1 through Offline (1)

L1 – calorimeter only (coarse segmentation)

- Resolution improvement
 - Equalize calorimeter response with simple correction
 - a x (EC+HC), a depends on jet(ET,h)
 - a x EC + b x HC, a,b depends on jet(ET,h)
- Fake Jets/Pileup jets rejection
 - Threshold cut on a central tower in jets (seed cut)

L2 – calorimeter only (fine segmentation)

- Resolution improvement
 - Better energy extraction from ADC counts
 - Em/had cluster separation using transverse shower shape in crystals
- Fake jet/Pileup jet rejection
 - Use of transverse shower shape

Algorithm for L1 through Offline (2)

L3 – calorimeter plus pixel

- Resolution improvement
 - Pileup energy subtraction
 - Estimation of energy flow from pileup events using pixel hits/tracks.
- Fake jets/Pileup jets rejection
 - Vertex information and jet pointing using pixel hits/tracks.

Offline – calorimeter plus fully reco-ed tracks

- Resolution improvement
- Fake jets/Pileup jets rejection
 - → Jet and MET will be reconstructed with Tracks, EM clusters and HAD clusters.
 - → All tracks down to E_T~ 700MeV have to be reconstructed at 10E34!
- Physics correction e.g. correction for IFR/FSR.
 - → In-situ calibration!